A New Two-dimensional Empirical Mode Decomposition Based on Classical Empirical Mode Decomposition and Radon Transform
نویسندگان
چکیده
Empirical mode decomposition is a method to decompose signals proposed by N.E.Huang et. al in 1998. It can extract adaptively the oscillatory modes at each time from a complex signal, namely it can decompose the signal into a finite (often less) number of intrinsic mode functions (IMFs). With Hilbert transform, the IMFs yield instantaneous frequencies as functions of time, that give sharp identifications of embedded structures. The final presentation of the results is a time-frequency-energy distribution, designated as the Hilbert spectrum and the new method for signal processing is called as Hilbert-Huang transform(HHT)[1]. Being different from Fourier decomposition and wavelet decomposition, EMD has no specified ”basis”. Its ”basis” is adaptively produced depending on the signal itself, which brings not only high decomposition efficiency but also sharp frequency and time localization. A key point is that the signal analysis based on HHT is physically significant. Because of its excellence, HHT has been utilized and studied widely by researchers and experts in signal processing and other related fields. In recent years, more and more works on HHT theory are reported such as [5, 6, 7, 2, 8]. Its application have spread from earthquake research, ocean science, biomedicine, speech signal analysis to image analysis and processing [9, 10, 11, 12, 13, 14, 4, 15, 16].
منابع مشابه
Blind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm
Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...
متن کاملA Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملNonlinear and Non-stationary Vibration Analysis for Mechanical Fault Detection by Using EMD-FFT Method
The Hilbert-Huang transform (HHT) is a powerful method for nonlinear and non-stationary vibrations analysis. This approach consists of two basic parts of empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). To achieve the reliable results, Bedrosian and Nuttall theorems should be satisfied. Otherwise, the phase and amplitude functions are mixed together and consequently, the ...
متن کاملA Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition
In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...
متن کاملEmpirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کامل